New Progress in the Global Carbon Assimilation System (GCAS)

Jing M. Chen^{1,2}, Jane Liu^{1,2}, Weimin Ju³, Fei Jiang³, Mousong Wu³, Shuzhuang Feng³, Hengmao Wang³, Rong Shang², Rong Wang², etc. ¹University of Toronto ²Fujian Normal University ³Nanjing University

17th US-China Carbon Consortium Annual Meeting

31 July, 2021, Chongqing, China

Content

- (1) Introduction to the Global Carbon Assimilation System (GCAS)
- (2) Ecosystem model in GCAS
- (3) Applications of GCAS
 - Optimization of the global terrestrial carbon flux
 - Optimization of China's anthropogenic carbon emission.

Motivations

1. The magnitude and distribution of terrestrial sinks are uncertain.

2. The magnitude and distribution of China's industrial carbon emission are also uncertain.

from global carbon budget office

Methods for Carbon Flux Estimation

Physical Basis of Atmospheric Inversion

Slide modified from Scott Dennin;

Framework of GCAS

Double Optimization of GCAS

Ecosystem Parameter Optimization

Terrestrial Flux Optimization

Progress in GCAS

GCAS V1: In situ CO₂ + satellite land surface remote sensing data Optimization of terrestrial ecosystem fluxes 科技部《全球变化》重大研究计划项目(2010-2014): "全球不同区域陆地生态系统碳源汇演变驱动机制与优化计算研究" PI: Jing M. Chen

GCAS V2: In situ CO₂ + satellite CO₂ column data + ground air pollution data +satellite land surface remote sensing data Optimization of terrestrial ecosystem fluxes + anthropogenic carbon emission 科技部《全球变化与应对》重点研发项目(2016-2020): "以遥感为驱动的高分辨率全球碳同化系统" PI: Weimin Ju

Technical Comparison of Major Inversion Systems

System	Country	Ecosystem Model	Land Remote Sensing?	Atms. Transport	Optim. Method	Time Steps	Spatial Res.	同化数据	Optim. By Region
Carbon Tracker	USA	CASA, LUE model	Yes, AVHRR NDVI	TM5	Ensemble Kalman Filter	90 min	Global 3°×2°, US 1°×1°	GLOBALVIEW+	Yes, 11 Transcom regions
CCDAS	Europe	BETHY, Enzyme- kinetic model	No	TM2/TM3	4-D variational	1 month	Land model 2°×2°; atmos. Model 8°×10°	SIO/ GLOBALVIEW 2015 soil moisture /VOD/FAPAR	No, By grids
GCAS	China	BEPS, Two-leaf enzyme kinetic + multilayer soil	Yes, GLOBMAP LAI	MOZART	Ensemble Kalman Filter	1 hour	Global 1°×1°	GLOBALVIEW+ /GOSAT/OCO-2	No, By grids

Ecosystem Models Useful for Atm. Inversion

• LUE Models

 ➢ Big-leaf: CASA、MODIS GPP模型
➢ Two Big-leaf: TL-LUE (He et al., 2013, AFM) RTL-LUE (Guan et al., 2021, AFM)

• Enzyme-Kinetic Models

➢ Big-leaf: BIOME-BGC、SIB2

- ➤ Two Big-leaf: BESS (Ryu et al., 2011, GBC)
- ➤ Two-leaf: BEPS (Chen et al., 1999, EM)

Simple	
Complex	
Complex	

Ecosystem Model in GCAS

Boreal Ecosystem Productivity Simulator (BEPS)

(It has been used for all global ecosystems)

Fig. 1. The major inputs/outputs and information flows in the updated BEPS model.

Liu et al., 1997; Chen et al., 1999; Ju et al., 2006

Ecosystem Model in GCAS

GCAS V1: In situ CO₂ + satellite land surface remote sensing data Optimization of terrestrial ecosystem fluxes 科技部《全球变化》重大研究计划项目(2010-2014): "全球不同区域陆地生态系统碳源汇演变驱动机制与优化计算研究" Pl: Jing M. Chen

GCAS V2: In situ CO₂ + satellite CO₂ column data + ground air pollution data +satellite land surface remote sensing data Optimization of terrestrial ecosystem fluxes + anthropogenic carbon emission 科技部《全球变化与应对》重点研发项目(2016-2020): "以遥感为驱动的高分辨率全球碳同化系统" PI: Weimin Ju

Leaf-level Photosynthesis Model

Farquhar's Enzyne-Kinetic Model

 $W_{\rm c}$ and $W_{\rm j}$ are temperature/nutrient-limited and light-limited gross photosynthesis rates

Scaling from Leaf to Canopy

EK and LUE Models to be Compared

Two-leaf EK Model

(Norman, 1993; du Pury and Farquhar, 1997; Wang and Leuning, 1998; Chen et al., 1999)

 $GPP = GPP_{sun}L_{sun} + GPP_{shaded}L_{shaded}$

Big-leaf Light Use Efficiency Model $GPP = \varepsilon(\varepsilon_{\max}, T_a, VPD, \dots)APAR$

Spatial Distributions of Modelled GPP

 $200 \quad 400 \quad 600 \quad 800 \quad 1000 \ 1200 \ 1400 \ 1600 \ 1800 \ 2000 \ 2200 \ 2500$

Big-leaf LUE Model 8-day Time Steps 1 km Resolution 2000-2005 average: 6.46 Pg C yr⁻¹ Two-leaf EK Model Hourly Time Steps 1 km Resolution 2000-2005 average: 6.04 Pg C yr⁻¹

Comparison with Measured Monthly GPP Derived from Eddy Covariance Data

(40 sites, 120 site-years, different PFTs)

Comparison with Measured Yearly GPP Derived from Eddy Covariance Data (40 sites, 120 site-years, different PFTs)

Similar Comparisons Found in Previous Studies

See also: Sims *et al.* (2006, *JGR*) Janhan and Gan (2009, *JGR*)

Rahman et al. (2005, JGR)

Shaded GPP is mostly responsible for the difference between MODIS and BEPS GPP

- Data: GOSAT ACOS v7.3
- Period: 2009-05-01 to 2015-12-31, Assimilation window: 1 week
- Prior flux: Land by BEPS; Ocean from pCO₂-Clim prior;
- Anthropogenic emission: CDIAC; biomass emission: GFEDv4

CO2 Concentration Improved by Assimilation

Table1. Statistics of the simulated surface CO2 and XCO2 concentrations against the

	BIAS (ppm)*		RN	ASE (ppm)	CORR		
	Prior	Posterior	Prior	Posterior	Prior	Posterior	
XCO_2	1.8±1.3	-0.0±1.1	2.2	1.1	0.95	0.96	
Surface CO ₂	1.6±1.8	-0.5±1.8	2.4	1.9	0.96	0.96	

surface flask observations and GOSAT retrievals, respectively

*mean ± standard deviation

Validation Using in situ Data

CO₂ Annual Growth Rate Is Improved

a 🌐 🎭

Figure 8. Interannual variations of the atmospheric CO₂ growth rates

Optimized Global Carbon Sink/Source Distribution

Response of Optimized Flux to Drought in Europe

GCAS seams to be the only model that responded well to severe drought

Optimization of China's Carbon Emission

Good relationships between Nox and CO₂ emissions

 $CO2_{t,s}^{top-down} = NOx_{t,s}^{top-down} \times \frac{CO2_{t,s}^{bottom-up}}{NOx_{t,s}^{tbottom-up}},$

t is time; S is type of fossil fuel

Liu et al., 2020, ACP

NOx and Weather Stations

Optimized China's Anthropogenic Carbon Emission

• Optimized flux is 6% higher than the Multi-Scale Emission Inventories of China (MEIC)

Western regions show increased emissions while some eastern regions show decreasing emissions. Scaling emissions with GDP and population could be the main reason for the biases in MEIC.

Optimized Carbon Flux by Province

Comparison of Various Estimates

a 🌐

- GCAS is further developed to assimilate satellite CO₂ column and surface air pollution data for land and anthropogenic carbon flux optimization;
- Optimized land fluxes using GOSAT CO₂ column data responded well to severe drought impacts on the land carbon flux;
- Air NO_x data are shown to be useful for optimizing anthropogenic carbon fluxes over China, although the results are yet to be validated

